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ABSTRACT

Sequential recommendation aims at identifying the next item that is
preferred by a user based on their behavioral history. Compared to
conventional sequential models that leverage attention mechanisms
and RNNs, recent efforts mainly follow two directions for improve-
ment: multi-interest learning and graph convolutional aggregation.
Specifically, multi-interest methods such as ComiRec and MIMN,
focus on extracting different interests for a user by performing his-
torical item clustering, while graph convolution methods including
TGSRec and SURGE elect to refine user preferences based on multi-
level correlations between historical items. Unfortunately, neither
of them realizes that these two types of solutions can mutually
complement each other, by aggregating multi-level user prefer-
ence to achieve more precise multi-interest extraction for a better
recommendation. To this end, in this paper, we propose a unified
multi-grained neural model (named MGNM) via a combination of
multi-interest learning and graph convolutional aggregation. Con-
cretely, MGNM first learns the graph structure and information
aggregation paths of the historical items for a user. It then performs
graph convolution to derive item representations in an iterative
fashion, in which the complex preferences at different levels can be
well captured. Afterwards, a novel sequential capsule network is
proposed to inject the sequential patterns into the multi-interest
extraction process, leading to a more precise interest learning in a
multi-grained manner. Experiments on three real-world datasets
from different scenarios demonstrate the superiority of MGNM
against several state-of-the-art baselines. The performance gain
over the best baseline is up to 3.12% and 4.35% in terms of NDCG@5
and HIT@5 respectively, which is one of the largest gains in recent
development of sequential recommendation. Further analysis also
demonstrates thatMGNM is robust and effective at user preference
understanding at multi-grained levels.

†Chenliang Li is the corresponding author. Work done when Yu Tian was an intern at
Kuaishou.
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1 INTRODUCTION

With the rapid development of the Internet, recommender systems
have become an important tool to solve information overload and
enhance competitiveness for many online services such as news
feeds, E-commerce, advertising, and social media. Obviously, se-
quential recommendation, which aims to identify the next item
that a user will prefer in terms of her historical behaviors, has
drawn increasing attention. The core challenge is how to capture
the accurate interests from the user’s complex behaviors.

In the past few years, many sequential recommendation solutions
have been proposed to model sequential patterns for preference
learning. Specifically, earlier works aim to learn a user embedding
vector by encoding the user’s overall preference from her complex
behavior sequence [11, 20, 22, 23, 27]. Typically, a sequence mod-
eling technique is applied over the user behavior sequence. For
example, GRU4Rec [11] uses the GRU module to encode preference
signals from user behavior sequences. CASER [22] considers the
sequence of item embeddings as an image and learns sequential
patterns via horizontal and vertical convolutional filters.

Despite the great success achieved by these solutions, all of
them ignore the discrimination of different interests by compositing
multifaceted preferences into a single vector. Figure 1 illustrates the
click sequences of two users from the E-commerce and Micro-video
datasets, respectively. Here, each video is displayed by its first frame.
From Figure 1(a), in this short click history, there are two main
interests: sports and games. To address the above problem, a handful
of multi-interest solutions are proposed recently. These methods are
devised to learn accurate preference vectors for each user by multi-
interest modeling. Generally, a multi-interest network is utilized
to explicitly encode the multiple interests according to relevant
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Figure 1: Partial viewing history of two real users in e-

commerce andmicro-video scenes, respectively. For the user

(a), there is a problem that itemshave an impact on two inter-

ests at the same time, i.e. interest overlapping at the (𝑡−2)-th
and 𝑡-th timestamps. For the user (b), there are two different

levels of interest in her interaction history: coarse-grained

(i.e. Cartoon) and fine-grained (i.e. Tom and Jerry).

information of items in the behavior sequence. For example, MIMN
[16] utilizes memory induction units as multiple channels to derive
multiple interests from the user’s behavior sequence, which delivers
large performance gain in the display advertising system of Alibaba.
What’s more, MIND [13] and ComiRec [1] have been improved
respectively on the basis of Capsule Network (CapsNet) [19], and
the online system has also gained benefits.

All these multi-interest models, however, take the item as the
minimum interest modeling unit, lacking the ability of modeling
complex, dynamic and high-order user behaviors. More specifically,
as shown in Figure 1 (a), the user mainly focuses on sports (shown
in green) and games (shown in blue). Note that the two items in
the (𝑡 − 2)-th and 𝑡-th timestamps have an impact on the modeling
of both two interests (i.e., interest overlapping). In this case, it is
difficult to decompose accurately for the existing multi-interest
solutions. Moreover, Figure 1 (b) shows that a user’s interest would
be in different granularities. To address this problem, some efforts
propose to combine the sequential modeling with graph neural
networks [2, 6]. They build an item graph for the historical in-
teracted items and perform the graph convolution to aggregate
the user preference in different levels. However, in comparison to
multi-interest solutions, these methods ignore the benefit of multi-
interest decomposition. All in all, how to model multiple interests
in a multi-grained manner is the problem we want to solve.

To this end, in this paper, we proposed a novel Multi-Grained
NeuralModel (namedMGNM) via amarriage betweenmulti-interest
learning and graph convolutional aggregation. Specifically,MGNM
is developed with two major components: user-aware graph con-
volution and sequential capsule network. We introduce a learnable
process to organize a user’s historical items in a user-aware man-
ner, such that the discriminative graph structure and information
propagation paths are well uncovered. We then perform graph con-
volution to derive the item representations iteratively, in which
the complex preferences in different levels can be well captured.
These multi-level item representations can better reflect the user’s
diverse preferences. Afterwards, a novel sequential capsule network
is proposed to inject the sequential patterns into the multi-interest

extraction process, leading to a more precise interest learning. The
recommendation is then generated in terms of the relevance be-
tween these multiple interests of different levels and the embedding
of the candidate item. To summarize, the contributions of this paper
are as follows,

• We propose a novel neural model by exploiting the both
benefits of multi-interest learning and graph convolutional
aggregation for better recommendation performance. Specif-
ically, MGNM can achieve multi-grained user preference
learning by integrating multi-level preference composition
and multi-interest decomposition into a unified framework.

• We devise a learnable graph construction mechanism to
achieve discriminative structure learning over complex user
behaviors. Moreover, a sequential capsule network is pro-
posed to exploit temporal information for bettermulti-interest
extraction.

• We conduct extensive experiments on three large-scale datasets
collected from real-world applications. The experimental
results show significant performance improvements com-
pared with the state-of-the-art technique alternatives. Fur-
ther analysis is provided to demonstrate the robustness and
interpretability of MGNM.

2 RELATEDWORK

Considering both sequential modeling and multi-interest learning
in recommender systems are two major areas related to our work,
we therefore briefly summarize the relevant existing methods in
these two areas.

2.1 Sequential Recommendation

Compared with the general recommendation, the scenario of se-
quential recommendation is different, and its main task is simplified
to predict what the user prefers for a commodity pool in the future
by using considering the sequential nature of the user historical
behaviors. During the early phase, traditional reasoning methods
are utilized, such as Markov Chain, which assumes that the next
action depends on the previous action sequence. For example, Ren-
dle et al. [17] propose to combine matrix factorization with Markov
Chains (MC) to achieve better performance in sequence recommen-
dation. And some works assume that the next action only relies
on the last behavior, using first-order Markov chain [4]. Note that
these methods are not capable to capture the long-term interests of
users effectively due to the limitation of the capability to simulate
the dynamic changes of user preferences over time. Then, the emer-
gence of neural networks further enhances recommender systems’
ability to extracte the preference of users, so another paradigm of
sequence recommendation method based on neural networks in ad-
dition to MC-based methods has gradually become the mainstream.
The most basic multi-layer perceptions (MLPs) structure extracts
the non-linear correlations from user-item interactions [10]. Then
a series of models [5, 16, 21, 28] represented by DeepFM [7] are
put forward. For the DeepFM model, the FM module is used for a
low-order combination of features, and the deep network module is
used for the high-order combination of features. By combining the
two methods in parallel, the final architecture can learn low-order
and high-order combination features at the same time. Referring



to the feature extraction mechanism in texts, audios, and pictures,
CNN is used to improve the model capability in sequence recom-
mendation. The CNN architectures are also verified to be effective
in this regard to a certain extent, by mapping item sequences to em-
bedding matrices. A representative work is Caser [22], which treats
the use’s behavior sequence as an "image" and adopts a convolu-
tional neural network to extract user representation. Nevertheless,
this mechanism ignores the sequential relations in sequence.

Compared with approaches based on DNN and CNN, RNN is
able to capture dynamic time series information [24, 29]. Hidasi et
al. [11] first introduce RNN to the sequential recommendation and
achieve impressive performance gain over previous methods. Due
to the appearance and excellent performance of the RNN network,
more and more methods based on the RNN structure are proposed.
GRU4Rec [11] first applies Gated Recurrent Units to model the
whole session for a more accurate recommendation. To quantify
the different importance of past interactions on the next prediction,
attention mechanism [23] is adopted. Specifically, attention mecha-
nism makes it easy to memorize various remote dependencies or fo-
cus on important parts of the input. In addition, the attention-based
methods are often more interpretable [20] than traditional deep
learning models. There are some other works that introduce specific
neural modules for particular recommendation scenarios, which
are mainly based on the combination of RNNs, CNNs, and attention
structure, leading to the applications of some emerging network
models coming into vogue. For example, memory networks [3, 12],
graph neural networks (GNN) [25, 26] that cooperate with the at-
tention mechanism are used to extract short-term features with
more consistency or adjacency consideration. SRGNN [25] regards
the session history as a directed graph. In addition to considering
the relationship between an item and its adjacent previous items, it
also considers the relationship with other interactive items. What’s
more, Fan and Liu et al. [6] integrate the sequence information and
collaboration information, use a transformer to capture the tempo-
ral relationship in the sequence, and construct a continuous-time
bipartite graph. SLi_Rec [27] utilized the fine-grained temporal
characteristics of interactive data in the sequence recommendation
to stress the ability to modeling sequential behaviors. The recent
work represented by TGSRec [6] combines graph and temporal
information to further greatly improve the performance of the
model.

In a word, most of the existing general sequential approaches are
learning to get a single representation of users from an RNN and
attention-based model according to the historical behaviors. And
graph models, which are capable to aggregate neighbor informa-
tion, have also been proved to be very effective. Nevertheless, the
user history interaction sequence contains more than one discrete
interest of the user, and a single vector can not fully express the
user preferences. In addition, the noise in the process of graph con-
struction and information aggregation is also an important reason
to limit the performance of graph-based sequential models.

2.2 Multi-Interest Recommendation

For a stronger ability to learn the complex behaviors precisely, re-
cently researchers consider that representing user preferences as a

single vector is insufficient, more and more sequential recommen-
dation models based on multi-interest, therefore, appear in our field
of vision. Li et al. [14] consider that users’ interests are dynamic and
evolve over time. A pre-trained model based on transformer struc-
ture is designed, using the item of the next time step as the label of
the interest at the current time step, and then obtains the interest
of each time step. The final interest representation is generated by
the attentional fusion structure. Pi et al. [15] propose MIMN system
which contains modules Neural Turing Machine (NTM), Memory
Induction Unit (MIU), etc. In the MIU module, an additional storage
unit s is also included, which contains M memory slots. It is consid-
ered that each memory slot is a user interest channel. Besides, both
MIND [13] and ComiRec [1] devise multi-interest recommendation
models on the basis of CapsNet, which uses the idea of neural rout-
ing to realize interest decomposition. Note that ComiRec introduces
two multi-interest extraction mechanisms including CapsNet and
self-attention. At the same time, they also have good applications in
the industry. The above methods are multi-interest methods based
on sequence models. With the popularity of graph neural networks,
the undeniable role of neighbor information has also been proved
to be effective obviously. Therefore, the approach of combining
graph and multi-interest has also attracted extensive attention in
recent years. For example, in SURGE [2], it forms dense clusters in
the interest graph to distinguish users’ core interests and performs
cluster-aware and query-graph graph convolutional propagation to
fuse users’ current core interests from behavior sequences. These
mentioned approaches have also been successfully applied in many
recommendation applications and are rather useful and efficient in
real-world application tasks.

3 METHOD

In this section, we present the proposed multi-grained neural model
in detail. As illustrated in Figure 2, the proposedMGNM consists of
two main components: user-aware graph convolution and sequential
capsule network. In the following, we firstly present the formal
problem setting. Then, we describe these components, followed by
the prediction and model optimization process.

3.1 Problem Formulation

LetV = {𝑥1, 𝑥2, ..., 𝑥𝑀 } denotes the set of all items,U = {𝑢1, 𝑢2, ..., 𝑢𝑁 }
be the set of all users, and {𝑏𝑢 }𝑁𝑀 be the behavior sequence set be-
tween these 𝑁 users and 𝑀 items. Here, for each user 𝑢, 𝑏𝑢 =

[𝑥1, 𝑥2, ..., 𝑥𝑚] is the sequence of her clicked items following the
chronological order, and𝑚 is the predefined maximum capacity.
The sequential recommendation is to precisely identify the next
item 𝑥𝑚+1 that user 𝑢 will click in terms of {𝑏𝑢 }𝑁𝑀 .

3.2 User-Aware Graph Convolution

In order to extract complex and high-order interests from user click
sequences, we consider the graph structure and the aggregation of
neighbor information of the target node at different distances in
the graph. So at the first step, we convert discrete history behavior
into a fully connected item-item graph. Compared with existing
methods, we do not artificial use co-occurrence, click of the same
user, and other relationships to enhance the graph, because this
approach often introduces noise, which affects the performance of
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Figure 2: The network architecture of our proposedMGNM. The raw sequence is the historical behavior of a user. By transform-

ing the original sequence into a user-aware adaptive graph and using the neural aggregation function of sequential CapsNet,

the timing information is added to the graph in the training process. In the inference stage of the model, the max-pooling

layer is used to obtain the final prediction score.

information aggregation in the later convolution process to some
extent. In theMGNM, the nodes and users embedding would be up-
dated by using the neural aggregation of CapsNet through gradient
feedback and then generate an adaptive graph structure.

3.2.1 Embedding Layer. In the embedding layer, we firstly form a
user embedding table 𝑈 ∈ 𝑅𝑁×𝑑 and an item embedding table 𝑉 ∈
𝑅𝑀×𝑑 , where 𝑑 denotes the dimension of the embedding vector. For
the given user 𝑢 and the associated behavior sequence 𝑏𝑢 , we can
perform the table lookup from𝑈 and𝑉 to obtain the corresponding
user and item embedding representations x𝑢 and [x1, x2, · · · , x𝑚]
respectively. Hence, the user embeddings𝑈 are expected to encode
the users’ overall preference, while the item embeddings 𝑉 reflect
items’ characteristics in this space instead.

3.2.2 Graph Construction. Given the historical behavior sequence
𝑏𝑢 = [𝑥1, 𝑥2, ..., 𝑥𝑚] of user 𝑢, we first transform the constituent
items into a fully connected undirected graph G𝑢 by taking each
item 𝑥𝑖 as a node. It is worth mentioning that we do not condense
repeated items in the sequence (i.e., representing multiple clicks of
the user), because the multiple clicks of the same item could convey
more user preferences. We then introduce A ∈ 𝑅𝑚×𝑚 to denote the
corresponding adjacency matrix, where each entry A𝑖, 𝑗 indicates
the relatedness between item 𝑥𝑖 and item 𝑥 𝑗 in the perspective of
user 𝑢. Instead of utilizing behavior patterns to derive matrix A, we
choose to learn this relatedness based on their hidden features as
follows:

A𝑖, 𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ((x𝑖 ⊙ x𝑗 ) · x𝑢 ), (1)

where ⊙ and · denote the Hadamard product and inner product
respectively, and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 denotes the activation function. We can
see that the user embedding x𝑢 is exploited to achieve user-aware
graph construction. That is, the same item pair could have different
relatedness values for different users. Also, the use of Hadamard
product ensures the symmetry of the adjacency matrix.

Note that graph G𝑢 is a fully connected. Hence, we need A to be
adequately discriminative to facilitate precise multi-level preference
learning. To achieve this purpose, we add 𝐿1 regularization on the
adjacency matrix A to approximate a certain sparsity.

3.2.3 Graph Convolution. Following the common practice, we per-
form graph convolution operation over G𝑢 as follows:

H(𝑙+1) = 𝛿 (D̃− 1
2 ÃD̃− 1

2H(𝑙)W), (2)

D̃− 1
2 = I + D− 1

2AD− 1
2 , (3)

H(0) = [x1, x2, · · · , x𝑚], (4)

where H(𝑙) denotes the item representations aggregated by the 𝑙-th
layer (𝑙 ∈ {1, · · · , 𝐿}), 𝛿 (·) denotes the LeakyReLU nonlinearity, 𝐼
denotes the identity matrix aiming to add self-loop propagation,W
denotes the trainable parameter and 𝐷 denotes degree matrix of
A. The parameter matrix W is shared for all 𝐿 layers. This modifi-
cation is to facilitate the feature aggregation from the high-order
neighbors, which also reduces the model complexity. The item rep-
resentations composited in each layer can reflect the user’s diverse
preferences more precisely.



3.3 Sequential Capsule Network

After extracting multi-level item representations {H(0) , · · · ,H(𝐿) },
where H𝑙 = [h(𝑙)1 , · · · , h(𝑙)𝑚 ] and h(𝑙)

𝑖
∈ 𝑅𝑑 , we choose to utilize

CapsNet to generate the user’s multiple interests for each level.
Actually, the existing works for multi-interest-based recommen-
dation utilize CapsNet to composite each interest representation
through the built-in dynamic routing mechanism. The output of
each capsule is equivalent to specific user interests. However, the
standard dynamic routing mechanism mainly achieves the function
of iterative soft-clustering. It is well validated that temporal infor-
mation is critical for the sequential recommendation. This is why
the application of CapsNet in fine-tuning CTR tasks is limited[1, 13].

Here, we repatch this defect by introducing a sequential encoding
layer for CapsNet. Specifically, given the item representations at
level 𝑙 , the 𝑖th capsule firstly performs a linear projection over H(𝑙)

as follows:

Z𝑖 = H(𝑙)W𝑖 , (5)

where Z𝑖 = [z(𝑙)1 , · · · , z(𝑙)𝑚 ] andW𝑖 ∈ 𝑅𝑑×𝑑 is the trainable param-
eter for the projection.

We then initialize g = [𝑔1, · · · , 𝑔𝑚] by truncated normal distri-
bution, where 𝑔𝑖 is the agreement score indicating the relevance
of item 𝑥𝑖 towards the capsule. The coupling coefficient c ∈ 𝑅𝑑 for
the corresponding dynamic routing mechanism is then derived via
a softmax function:

c = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (g). (6)

Then, the capsule derive its output o𝑖 via a nonlinear squashing
function as follows:

o𝑖 =
∥v𝑖 ∥2

∥v𝑖 ∥2 + 1
v𝑖
∥v𝑖 ∥

, (7)

v𝑖 =
𝑚∑︁
𝑗=1

𝑐 𝑗 z
(𝑙)
𝑗
, (8)

where 𝑐 𝑗 is the 𝑗th element of c. We then update the agreement
score 𝑔𝑖 as follows:

𝑔𝑖 = 𝑔𝑖 + o⊤𝑖 z𝑖 . (9)

After this first iteration, we utilize a BiLSTM1 module to encode
sequential patterns and update Z𝑖 via a residual structure:

Z𝑖 = Z𝑖 + 𝐵𝑖𝐿𝑆𝑇𝑀 (Z𝑖 ). (10)

We then repeat the above routing process following Equation 6-10
for 𝜏 − 1 without further applying BiLSTM encoding over Z𝑖 . That
is, total 𝜏 iterations are performed for each capsule. The output o𝑖
in the last iteration is fed into a full-connected layer to derive the
𝑖th interest representation q(𝑙)

𝑖
in the 𝑙 level as follows:

q(𝑙)
𝑖

= 𝑅𝑒𝐿𝑈 (o𝑖W′
𝑖 ), (11)

whereW′
𝑖
∈ 𝑅𝑑×𝑑 is the trainable parameter. Assuming the number

of interests is𝐾 , we obtain𝐾 interest representations [q(𝑙)1 , · · · , q(𝑙)
𝐾

]
for the 𝑙th level. That is, we extract in total (𝐿 + 1) · 𝐾 interest rep-
resentations.
1Any other sequential modeling techniques like GRU and Transformer can be straight-
forwardly applied here.

3.4 Prediction and Model Optimization

3.4.1 Prediction. Given a candidate item 𝑥𝑡 , we firstly utilize an
attention mechanism to derive the user preference vector p(𝑙)𝑢 for
𝑙th level as follows:

p(𝑙)𝑢 =

𝐾∑︁
𝑗=1

𝑎 𝑗q
(𝑙)
𝑗
, (12)

𝑎 𝑗 =
exp(q(𝑙)⊤

𝑗
x𝑡 )∑𝐾

𝑘=1 exp(q
(𝑙)⊤
𝑘

x𝑡 )
, (13)

where 𝑎 𝑗 is the attention weight for 𝑗th interest. Then, we choose
inner product to calculate the recommendation score as follows:

𝑦
(𝑙)
𝑢,𝑖

= p(𝑙)⊤𝑢 x𝑡 , (14)

where 𝑦 (𝑙)
𝑢,𝑖

denotes the recommendation score for the 𝑙th level.
Note that different users could have different interest granularity.
In other words, some users’ interests are very complex and dynamic,
the high-level user preference is more accurate. On the other hand,
some users’ interests are simple and straightforward, it is more
appropriate to utilize the low-level user preference or even original
item representations. Hence, we derive the final recommendation
score by using the max-pooling:

𝑦𝑢,𝑖 = max(𝑦 (0)
𝑢,𝑖
, · · · , 𝑦 (𝐿)

𝑢,𝑖
). (15)

3.4.2 Model Optimization. For the sake of enabling the model to
capture user interests of different granularity from low-level to
high-level, we choose to define a cross-entropy loss for each level.
Thus, the final loss is formulated as follows:

L𝑎𝑙𝑙 =
𝐿∑︁
𝑙=0

L𝑙 + \1L1 + \2L2, (16)

L𝑙 = −
∑︁
𝑢,𝑖

[𝑦𝑢,𝑖𝑙𝑛(𝑦 (𝑙)𝑢,𝑖 ) + (1 − 𝑦𝑢,𝑖 )𝑙𝑛(1 − 𝑢 (𝑙)𝑢,𝑖 )], (17)

where 𝑦𝑢,𝑖 denotes the ground truth for user 𝑢 and item 𝑥𝑖 , L1
denotes the 𝐿1 norm of the matrix A, L2 denotes the 𝐿2 norm of
all model parameters, \1 and \2 denote the hyperparameters.

4 EXPERIMENTS

In this section, we conduct extensive experiments on three real-
world datasets from different domains for performance evaluation.
We then analyze the contributions of several components and dif-
ferent settings forMGNM2. Finally, a thorough analysis of ablation
experiments and a framework optimizer exploration are presented.

4.1 Experimental Settings

Datasets. The first dataset (namelyMicro-video) is collected from a
leading large-scale Micro-video sharing platform. This dataset con-
tains 60, 813 users and their interaction records over seven days (i.e.,
October 22 to October 28, 2020). We take the interactions made in
the first six days as the training set. The interactions were made
before 12PM on the last day as the validation set, and the rest as
the test set.
2The code implementation is available at https://github.com/WHUIR/MGNM

https://github.com/WHUIR/MGNM


Table 1: Statistics of the three datasets.

Datasets #Users #Items #Interactions

Micro-video 60,813 292,286 14,952,659
Musical Instruments 60,739 56,301 946,627
Toys and Games 313,557 241,657 6,212,901

The other two datasets are from Amazon product datasets3: Mu-
sical Instruments and Toys and Games. Here, each user interaction
in the Amazon dataset is associated with a user rating score. Fol-
lowing the previous works [8, 9, 18], we take each user interaction
with a rating score larger than 2 as the positive. We then organize
these interactions and split the interaction sequence with the ratio
of 7:1:2 to form the training, validation, and test set respectively
following the chronological order. We further remove users whose
length of history sequence is 1.

Table 1 summarizes detailed statistics of the three datasets after
preprocessing. The Micro-video dataset includes a large number of
items, while Toys and Games is much smaller. Also, the Musical
Instruments is the smallest according to the interaction number.
We can see that these three real-world datasets hold different char-
acteristics, covering a broad range of real-world scenarios.

Baselines.We compare the proposedMGNM against the following
state-of-the-art sequential recommendation methods:

• Caser [22] is A CNN-based model which applies horizontal
and vertical convolutional filters to capture the point-level,
union-level, and skipping patterns for sequential recommen-
dation.

• A2SVD [27] is short for the asynchronous SVD method,
which modifies the prediction model to express the user as
the superposition of items. Combined with implicit feed-
back data, the parameters of the model are reduced, and the
interpretability of the original SVD model is enhanced.

• GRU2Rec [11] utilizes the gated recurrent unit to model
the session sequence for recommendation.

• SLi_Rec [27] improve the traditional RNN structure by propos-
ing a temporal-aware controller and a content-aware con-
troller so that contextual information can guide the state
transition. An attention-based framework is proposed to
combine the user’s long-term and short-term preferences.
Hence, the representations can be generated adaptively ac-
cording to the specific context.

• MIMN [15] is a state-of-the-art multi-interest model that
utilizes a multi-channel memory metwork, to capture user
interests from the sequential behaviors .

• MIND [13] is a multi-interest learning model that utilizes
CapsNet to capture diverse interests of a user.

• ComiRec [1] is a recent multi-interest model containing a
multi-interest module and an aggregation module. The multi-
interest module captures a variety of interests from the user
behavior sequence, and can retrieve the candidate item set
in a large-scale item pool. Then the aggregation module uses
controllable factors to balance the accuracy and diversity
for recommendation. Two variants of ComiRec are used for

3http://snap.stanford.edu/data/amazon/

performance comparison: ComiRec-DR and ComiRec-SA,
where CapsNet and self-attention are used for multi-interest
extraction respectively.

• SURGE [2] is a uptodate graph neural model for sequential
recommendation, which performs cluster-aware and query-
graph propagation to fuse users’ current core interests from
behavior sequences.

• TGSRec [6] is also a uptodate graph neural model that con-
siders temporal dynamics inside the sequential patterns.

All these baselines can be divided into four categories: (1) traditional
sequential models that utilize RNN and attention mechanism (i.e.,
Caser, A2SVD and GRU4Rec); (2) temporal-aware models that ex-
ploit the timestamp information (i.e., SLi_Rec and TGSRec); (3)
multi-interest models that derive various user interest (i.e.,MIMN,
MIND, ComiRec-DR, ComiRec-SA and SURGE); (4) graph nerual
models that exploit high-order correlations (i.e., SURGE).

Hyperparameter Settings. For a fair comparison, all methods
are implemented in Tensorflow and learnt with Adam optimizer.
The learning rate, mini-batch size are set to 1𝑒 − 3 and 256. The
number of negative samples is 5 in the training stage for all three
datasets.We tuned the parameters of all methods over the validation
and set the embedding size as 16 and 40 for Amazon datasets and
Micro-video datasets respectively. Specifically, as to MGNM, we
found our model performs relatively stable when 𝐾 = 4, 𝐿 = 3, and
\1 = 1𝑒 − 6, \2 = 1𝑒 − 5.

Evaluation Metric. Following the same setting in [6], we sam-
ple 1, 000 negative items for each testing instance. Four common
metrics: hit rate (HR), mean reciprocal rank (MRR), and normal-
ized discounted cumulative gain (NDCG) and Group AUC (GAUC),
are used for performance evaluation. For method, we repeat the
experiment 5 times and report the average results. The statistical
significance test is conducted by the student’s 𝑡-𝑡𝑒𝑠𝑡 .

4.2 Performance Evaluation

The overall performance of all methods is reported in Table 2. Here,
we make the following observations.

As for traditional sequential models that utilize RNN and atten-
tion mechanism, they are difficult to achieve better performance.
Compared with temporal-aware models and multi-interest models,
they are not suitable for complex and various user interest mod-
eling. The temporal-aware models perform very well in Amazon
datasets. Specifically, on the Music Instruments dataset, TGSRec
and Sli_Rec achieve the best performance in terms of GAUC and
NDCG@5 respectively. They also achieve strong performance in
terms of the other six metrics for both Toys and Games and Music
Instruments. It is worthwhile to mention that TGSRec needs to
build a global graph and takes the interactions at different time
points as edges. This design choice requires much more computa-
tion cost for graph retrieval and convolution. Note that the graph
constructed on the Micro-video dataset contains more than 200mil-
lion edges. We utilize the implementation released by the original
authors for evaluation. The time of an epoch training exceeds 1, 200
hours. Hence, we do not obtain results on the Micro-video dataset.

Also, given the superiority of these temporal-aware models on
both Amazon datasets, the multi-interest models perform better on

http://snap.stanford.edu/data/amazon/


Table 2: Performance comparison of different methods across the three datasets. The best and second-best results are high-

lighted in boldface and underlined respectively. ∗ indicates that the performance difference against the best result is statisti-

cally significant at 0.05 level. Note that TGSRec took too long to train hence has no results on the large Micro-video dataset.

See context for details.

Method Micro-video Toys and Games Music Instruments

GAUC NDCG@5 HIT@5 MRR@5 GAUC NDCG@5 HIT@5 MRR@5 GAUC NDCG@5 HIT@5 MRR@5

Caser 0.6917* 0.0964* 0.1417* 0.0815* 0.6234* 0.0679* 0.1012* 0.0569* 0.6763* 0.0955* 0.1178* 0.0883*
A2svd 0.6808* 0.0443* 0.0686* 0.0364* 0.6846* 0.0507* 0.0739* 0.0430* 0.6652* 0.0956* 0.1368* 0.0820*

GRU4Rec 0.6944* 0.0702* 0.1050* 0.0589* 0.6624* 0.0840* 0.1278* 0.0697* 0.6498* 0.0619* 0.1049* 0.0478*

SLi_rec 0.6903* 0.0948* 0.1390* 0.0802* 0.7847* 0.0932* 0.1327* 0.0803* 0.6912* 0.1078 0.1507* 0.0937*
TGSRec – – – – 0.7915* 0.1410* 0.2027* 0.1164* 0.7759 0.0946* 0.1653 0.0729*

MIMN 0.7387* 0.1151* 0.1683* 0.0977* 0.7224* 0.1158* 0.1676* 0.0988* 0.6787* 0.0955* 0.1509* 0.0750*
MIND 0.6778* 0.08582* 0.1367* 0.0700* 0.6611* 0.1015* 0.1510* 0.0824* 0.6588* 0.1040* 0.1422* 0.0898*

ComiRec-DR 0.7028* 0.0863* 0.1307* 0.0718* 0.6681* 0.1131* 0.1597* 0.0978* 0.6647* 0.1091* 0.1541* 0.0943*
ComiRec-SA 0.6249* 0.0354* 0.0577* 0.0281* 0.6486* 0.0665* 0.0977* 0.0563* 0.6559* 0.0820* 0.1204* 0.0694*

SURGE 0.8116* 0.1091* 0.1728* 0.0883* 0.7863* 0.0930* 0.1353* 0.0791* 0.6902* 0.1056* 0.1494* 0.0913*

MGNM 0.8325 0.1463 0.2163 0.1232 0.8078 0.1611 0.2231 0.1408 0.7480* 0.1057 0.1658 0.1021

the Micro-video dataset. This suggests that neither temporal-aware
models nor multi-interest models are robust enough to achieve
precise preference understanding across different scenarios. Con-
sidering the semantic space in the Micro-video recommender sce-
nario could be much broader than commodities in E-Commerce
scenarios, the interest of each user also becomes more complex. It
is reasonable that the multi-interest models could achieve better
recommendation performance instead.

Our proposedMGNM has obvious improvement in most settings
for the three datasets including Micro-video, Toys and Games, and
Music Instruments. In detail, MGNM performs significantly better
than all the baselines on 10 out of 12 dataset and metric combina-
tions. Although ourMGNM achieves only comparable NDCG@5
performance against SLi_Rec and performs a bit worse to TGSRec in
terms of GAUC both on the Music Instruments dataset, we need to
emphasize that both SLi_Rec and TGSRec exploit additional times-
tamp features to seize more discriminative capacity. In other words,
our modelMGNM lacks one-dimensional timestamp characteris-
tics than these two models (i.e. SLi_Rec and TGSRec). Note that
modeling multi-grained multi-interest in MGNM and exploiting
timestamp information are not mutually excluded. As shown in
Equation 10, it is straightforward to include fine-grained times-
tamp information in the sequential capsule network component4.
Moreover, we can see that our proposed MGNM performs increas-
ingly better on larger datasets. The relative performance gain by
MGNM against the best baseline is in the range of 1.63% − 2.44%
and 2.09% − 4.35% on Toys and Games and Micro-video datasets
respectively. This further confirms that our MGNM is effective
to capture multi-grained user interests for large-scale real-world
scenarios that are rich in semantics.

4.3 Model Analysis

Here, we investigate the impact of each design choice and important
parameter settings to the performance of MGNM.

4We leave it as a part of our future work.

Ablation Study. We conduct an ablation study for each design
choice in MGNM to justify their validity. Specifically, these factors
include user-aware graph convolution (UGCN), the 𝐿1 regular-
ization on the adjacency matrix 𝐴 (𝐿1Norm), sequential capsule
network without sequential encoding layer (BiLSTM), and the max-
pooling based prediction (MaxPool). As to the sequential capsule
network, we also examine the following variants:

• SCN→ BiLSTM: We replace the sequential capsule network
with BiLSTM to encode the user behavior sequence in differ-
ent levels. The last hidden state generated by the BiLSTM is
taken the user interest in the corresponding level.

• SCN→ SumPool: We replace the sequential capsule network
with a sum pooling mechanism. Similar to SCN→ BiLSTM,
the resultant representation is taken the user interest for the
corresponding level.

• SCN→ SelfAtt: We replace the sequential capsule network
with a self-attention mechanism. The candidate item is uti-
lized to derive the user interest for each level by using an
attention mechanism.

• SCN (Transformer): We replace the built-in BiLSTM in the
sequential capsule network with a powerful transformer
module.

Table 3 reports the performance of these variants and the full
MGNM model on Toys and Games dataset5. Here, we can make the
following observations.

Firstly, The 𝐿1 regularization indeed improves the discrimina-
tive capacity of user-aware graph convolution. The experimental
results show that the performance degradation without it is obvi-
ous. When we remove the multi-level item representation learning
supported by user-aware graph convolution (i.e., w/o UGCN), sub-
stantial performance degradation is also experienced by MGNM,
which illustrates the effectiveness of user-aware graph convolution
and multi-level preference learning significantly. Also, we can find

5Similar observations are also made in the other two datasets
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Figure 3: The performance of different 𝐿 values on Toys and Games and Micro-video Datasets.
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Figure 4: The performance of different 𝐾 values on Toys and Games and Micro-video Datasets.

Table 3: The ablation study of MGNM on Toys and Games

Dataset. The best results are highlighted in boldface.

Model Toys and Games
GAUC NDCG@5 HIT@5 MRR@5

w/o UGCN 0.7499 0.0929 0.1325 0.0799
w/o 𝐿1Norm 0.7757 0.1306 0.1848 0.1128
w/o BiLSTM 0.6743 0.1205 0.1689 0.1046
w/o MaxPool 0.8491 0.0980 0.1430 0.0832
SCN→ BiLSTM 0.6589 0.0838 0.1223 0.0712
SCN→ SumPool 0.6651 0.0846 0.1232 0.0720
SCN→ SelfAtt 0.6724 0.0791 0.1148 0.0674

SCN (Transformer) 0.6663 0.0923 0.1321 0.0792
MGNM 0.8078 0.1611 0.2231 0.1408

that MGNM experiences a large performance degradation by re-
moving the sequential encoding layer (i.e., w/o BiLSTM). This is
reasonable since the sequential patterns have been well validated
to be effective for the sequential recommendation. Now, we further
validate that sequential patterns are also very useful for multi-
interest learning. At last, the max-pooling-based prediction plays
a great role in improving all four performance metrics. As we de-
scribed earlier, the max-pooling mechanism is flexible in capturing
the complex user preference from multi-grained interests.

Secondly, we further dive deep into the effectiveness of the se-
quential capsule network component. The first three variants (i.e.,
SCN→ BiLSTM, SCN→ SumPool, SCN→ SelfAtt) aim to remove

the multi-interest modeling by considering only the multi-level
user preferences. We can see that these three variants all experi-
ence significant performance degradation across the four metrics.
Recall thatMGNM w/o UGCN also produces a substantial perfor-
mance degradation above. These two observations suggest that
both user-aware graph convolution and sequential capsule net-
work works as a whole and either of them complements the other,
leading to better user preference understanding. At last, we find
that encoding sequential patterns with a heavy module like trans-
former achieves better performance than SCN→ BiLSTM, SCN→
SumPool, and SCN→ SelfAtt in terms of NDCG@5, HIT@5 and
MRR@5. This also validates the benefit of modeling sequential
patterns for multi-interest learning. However, the huge number
of parameters involved in a transformer module could complicate
the model optimization process. Note that we also derive multi-
level item representations by the user-aware graph convolution, a
lightweight sequential model like BiLSTM is sufficient for the next
step. At the same time, to the best of our knowledge, there are no
previous methods to integrate sequential modeling with CapsNet.

Impact of 𝐿 Value. Recall that we stack 𝐿 layers of graph con-
volution in MGNM to reflect the user’s diverse preferences in
multi-grained manner. A larger 𝐿 value can recruit more high-
order neighbors to derive the user’s preference more and more
distant neighbor information is aggregated. However, some noisy
information would also be included to deliver adverse impact. In
Figure 3, we plot the performance patterns of varying 𝐿 values for
both Toys and Games and Micro-video datasets. It is reasonable
to see that all NDCG@5, HIT5 and MRR@5 scores firstly increase
when 𝐿 becomes large (𝐿 ≤ 3), and then decrease when 𝐿 is too
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Figure 5: Visualization of multi-level user interest distribu-

tion on Micro-video dataset (Best viewed in color).

large (𝐿 > 3). Also, the metric GAUC seems to be very stable for
different 𝐿 values.

Impact of 𝐾 Value. The number of interests 𝐾 inMGNM controls
the diversity of user preferences. Figure 4 plots the performance pat-
terns of varying𝐾 values for both Toys and Games and Micro-video
datasets. We can observe that a single interest representation (i.e.,
𝐾 = 1) achieves the worst performance across the four metrics. The
optimal 𝐾 value is 2 and 4 for Toys and Games and Micro-video
datasets respectively. Moreover, we can see thatMGNM achieves
relatively more stable performance when 𝐾 is in the range of [3, 5].
This is reasonable since the semantic space of the Micro-video
dataset is much broader than the Toys and Games dataset.

Multi-Level User Interest Distribution. In Figure 3, we examine
the impact of different 𝐿 layers in Micro-video. Here, we further
investigate whether the multi-level user preferences indeed per-
form different roles for different users. Specifically, we randomly
sample 50 users from the Micro-video and Toys and Games datasets,
respectively. For each user, we include her positive items in the
test set and thousands of random negative items, and count the
activated preference level by the max-pooling based predictor (ref.
Equation 15). Figure 5 and Figure 6 plots the distribution of these
activated levels for each user on Micro-video and Toys and Games
datasets, respectively. We can observe that the desired preference
level is quite different for different users. Also, the first two layers
are adequate for most users in MGNM on Toys and Games dataset.
But we also need to derive high-level preferences for a few users (i.e.,
𝐿 ≥ 2) in Figure 6. As for the Micro-video dataset with a larger
semantic space, the role of high-level preferences becomes more
significant to all users from Figure 5. On the whole, users have
more high-level preferences on Micro-video. In other words, users’
interests in Micro-video scenes are higher-level, more complex, and
change faster, which we mentioned in figure 1 and the previous
analysis. Thus, this phenomenon is in line with our expectations,
which well proves the effective impact of the multi-level mecha-
nism. Furthermore, in the inference stage, we replace max-pooling
with sum-pooling to further verify the influence of max-pooling
structure in Figure 7. In combination with the distribution of user
interests in Figure 5 and 6) and the better experimental results of
max-pooling than sum-pooling in Figure 7, this suggests that the
user-aware graph convolution does distinguish the user’s interest in
multi-level precisely and the multi-level mechanism does promote
the performance.
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Table 4: Runtime comparisons for different datasets.

Datasets Per Iteration (s) Iterations Total Time (m)
Micro-video 0.3825 15,311 97.60

Toys and Games 0.1843 13,202 40.55
Music Instruments 0.0598 2,373 2.37

TimeComplexityAnalysis.Table 4 reports the runtime of MGNM
training procedure for a single user on different datasets by using a
single GPU. Although the MGNM adopt the graph convolution, we
can see that the model training with 15M interactinos takes about
1.5H for one epoch, which is computationally efficient.

5 CONCLUSION

In this paper, we proposed a novelmulti-grainedneuralmodel (named
MGNM) with a combination of multi-level and multi-interest as a
unified solution for sequential recommendation task. A learnable
process was introduced to re-construct loose item sequences into
tight item-item interest graphs in a user-aware manner. We then
performed graph convolution to derive the item representations
iteratively, in which the complex preferences in different levels
can be well captured. Afterwards, a novel sequential CapsNet was
designed to inject the sequential patterns into the multi-interest
extraction process, leading to a more precise interest modeling. Ex-
tensive experiments on three real-world datasets in different recom-
mendation scenes demonstrated the effectiveness of the multi-level



and multi-interest mechanisms. Further studies on the number of
preferences and multi-level user interest distribution confirmed
that our method was able to deliver recommendation interpretation
at multi-level granularities.
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